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Wavevector- and frequency-dependent collective modes in
one-component rare hot quantum and classical plasmas
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Received 10 August 1994, in final form 28 December 1994

Abstract. An analytical expression for the complex dielectric function .sg(k. w) = s?(k, )+

iezg {k, w) for a one-component quantum hot rare plasma, vahd for all values of the wavevector £
and angular frequency ¢, has been obtained using the two-particle quantum distribution function.
It contains terms of all orders in 4% and reduces to & (k, w), suggested earlier by us, when
Planck’s constant # = 0. z?(k, w) yields a convergent value for {w/kv) > 1, unlike that given
by the Green function formalism, when a large number of terms in the series are summed (V
being the thermal velocity).

Expressions for the dynamic structure factors S2(k, @) and st (k,wo = 0 and the
static structure factor S2¢(k) have been obtained which reduce to the corresponding classical
expressions when 4 = 0.

Computatians for one-component quantum and classical plasmas in an n-doped
semiconductor having an electron density of 3.9 10'® cm=3 ar 297 K have been made, e?(."c, ),

sf (k. w), S2 (k. w), ete, turn out to be quite different from the corresponding classical functions
when kk/mV > 1 (m being the mass of the mobile component). S@(k, w), the singularity of
which represents the collective mode. shows a smaller peak and its width is much broader in
comparison with that of the corresponding 5% (k, #). The quantum-mechanical nature of the
plasma thus introduces a sort of disorder in the plasma.

1. Introduction

A one-component rare plasma occurs in various physical situations such as the ionosphere,
intergalactic space and doped semiconductors at appropriate density and temperatures,
In such a plasma, only one component is mobile while the other is taken to be static
and is essential for maintaining the charge neutrality of the plasma. The plasma is in
thermodynamic equilibrium at 2 finite temperature (hot plasma}; therefore, its collective
modes are wavevector dependent [1,2]. The complete dynamical information about such
a system is contained in the frequency v(= w/2x) and wavevector |k|-dependent (where
|k| = 2w /A with A the wavelength and o the angular frequency) complex dielectric function
g(k, w), of the plasma. The real part of the dielectric function with put equal to zero and
solved yields the collective modes of the plasma [2]. The imaginary part represents the
damping of these modes. The plasma exhibits well defined collective modes when the
damping is small.

Collective modes of the plasma can also be determined from the singularities of the
dynamical structure factor S(k, ), which can be obtained from the response function
1/e(k, @) using the fluctuation-dissipation theorem [2, 6].

f Author to whom correspondence should be addressed.
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When the mobile component forms a rare gas, there is hardly any interparticle interaction
and one can use the Maxwellian distribution function for its momentum in the evaluation
of ek, @) [3-5]. In such a study, it is assumed that the mean interparticie distance 2r;
(r; being the radius of the sphere assigned to each particle; r, = (3n/47)!/? where n is
the number density of particles) is very large in comparison with the thermal de Broglie
wavelength Ay, (= h/+/2mkgT where h is the Planck constant, = the mass of the mobile
component, kg the Boltzmann constant and T the temperature of the rare gas); therefore, the
plasma is referred to as a one-component classical rare hot plasma (QCCRHP). However,
there may be a situation in practice where such an approximation is not valid; one will,
therefore, have to take into account this quantum-mechanical effect. In this case the plasma
is referred to as a one-component quantum-mechanical rare hot plasma (OCQRHP) or
weakly degenerate rare plasma in contrast to the case of a metal where the plasia is dense
and strongly degenerate [7, 8]. The general complex dielectric function for such a plasma has
hardly been investigated, It is, therefore, worthwhile to study and compare the wavevector-
and frequency-dependent collective modes in an OQCQRHP and an OCCRHP. In addition,
knowledge of the full e(k, @) is essential to evaluate various physical quantities such as the
loss of energy of a charged particle [7, 9] passing through it and the build-up of the mobile
component about a finite mass charged impurity [5] which may also yield the positron
annihilation rate [10] in the plasma where electrons are the mobile particles. In this paper
we have derived an explicit expression for an OCQRHP using the two-particle quantum
distribution function, studied its various cases and investigated the wavevector-dependent
collective modes for both an OCQRHP and an OCCRHP.

In section 2 we give different mathematical formulations. The results and discussion
are given in section 3, followed by the conclusions in section 4.

2. Mathematical formalism

2.1. Dielectric function

The expression for the wavevector- and angular-frequency-dependent dielectric function
£2(k, w), for a one-component quantum plasma, in terms of two-particle quantum
distribution functions fui(k, @) is given as follows [11]:

(k@) =1+ Z—Zim(k,w) — fo k@), )

The expression for the quantum two-particle distribution function when the single-
particle momentum distribution function f3(p) is taken to be Maxwellian (ie. fo(p) =

Aexp(—p?/2mkgT)) as is appropriate for the one-component rare hot plasma is given as
follows [11, 12}

1 4mwne? dp hk
fi(k"")_ﬁ k2 .[(co—k'P/mHe)f(PiT) @

where e and p are the charge and the linear momentum of the electron respectively.
Substituting for f:(k, ) from equation (2) in equation (1} and solving for the limit 2 = 0,
it can be shown that equation (1) reduces to the following well known classical expression
obtained from the collisionless linearized Boltzmann transport equation [4]:

4:re2k ‘ [ afo(p) dp
k2 p (w—k-p/m-+ie)’

ek wy=1+

3
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Making use of the Maxwellian momentum distribution function in equation (2), and the

Dirac identity
! — =P (}-) —im8(x) “4)
x+1e x

one can solve for the imaginary part of fi(k, ®) after assuming k to be parallel to the z
axis, without any loss of generality, to obtain the following:

Im fa (k. ) 2mm ne* o ( hk? )ex ( mew?
m )= | —— - —_—
* iaT & P\ T8kt ) P\ T2 T
how how
X [‘”‘" (stT) ~exp (‘str)]' ©)

The value of A is evaluated using the following sum rule:

j:o wlmle(k, @)jdw = g-wg &)

where w,(= +/4wne?/m) is the angular plasma frequency of the electrons. Using
equations (4) and (2) one obtains for the real part of f.(k, )

drnemkpT A h2k? ® dp, pl =+ hkp,
Rel etk = T g (g ) [ S e [* (W)] @

where &' = kp,/m. Using the transformations

s mo? . met

T Wt 7 T 2T
to simplify equation (7}, one obtains

242 ac s
Relfu (. 03] — dmne?m2kpT A dx xp [_ (x N 2) } ®

k3 o ¥ — X 2

with D = k),,. Equation (8) can be rewritten as

dznet { m 1 mB\'? fw bk
N

-{(#)" (-]

where § = 1/kg7T and

exp(—1%)

=]
¢(z)=rr-’/2pf dt
o Z—1

After solving the principal value integral occurring in (8) one can write the complete
dielectric function for the OCQRHP as

2 2
ek, w) =1+ @ mV exp | — ( ©_ ) ( ©_, M )
N2k2V? hk V2KV 2 2mV V2RV 22mV

" {1 N % (\/:;.l;cv * 2«/};"];1/)24- } o [_ (‘/;"V ) 2‘/};:“‘/)2]
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( w hk ) 1 ( w hk )2
X - 14— - + ..
V2RV 22mV 3NV2hV 242mV
+i\/§ % exp[—(w?/2k2V?)]

2
X [exp I:—% (%) ] (exp(haw/2kgT) — exp(—hw/ZkgT))}:H (10}

e2(k, w) = el (k, w) +ie2 (k, ) (11)

where V(= /kgT/m) is the thermal velocity. Equation (10) is the full quantum wavevector
and frequency-dependent dielectric function of a one-component rare hot plasma.

We now consider the particular cases of ¢2(k, w) given by equation (10).

When @ =0, EZQ (k,w) =0and sIQ {(k, w) reduces to the following:

V2wlm D? 1 /DN 1 /DY
2 — = iy
ek, ) =1+ th3 Dexp( 4) 1-!—3( ) +10( )+ (12)
which is the same as
wz p? 1 DZy?
(k =14+ k"\ﬂ exp (——4—)’[) exp( i )dx (13}

in agreement with the results obtained earlier [12,14,15]. When i = 0, equation (13)
reduces 1o the well known classical expression [5, 13] given as follows:
2

Cz)
ek, 0 = 1+ 505

When & =0, e2(k, w) reduces to £ (k, @), which can also be seen by putting equation (10)
in the following alternative form:

@} 1 2/ o
) = pt! 2 —_—— =
ek, w)=¢"(k,w)+ {2 ZV"'[ 6+3(2k2V9) + ]
WE G w +§(w_2 S
8 miVi| v 3\UV?
] 5 _L_i(_fi)_...]
4m*VE |60 10 \ 2k2V?
2
) —-~]]+0(h°)+0(h3)+---
(15)

(14)

g
-3
N
€
(54

T ol
128 m*VS | Jfaky  \2k2V?

where
ek, w) = e (k, @) + ied (k, w) (16)
with

mz o w2 w?
cf _ fi _
fk o =14 50 -~ myEn °XP( zkzw)

el (=2 ) (< 2+ an
3\2evE ) T 1o \2zeve
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and

2 2
ol T Y w ©
Gk w) = |k exp (= ) . 1
&2 (k. @) 2k2V2kVexP( 2k2V2) (18)

These are the well known expressions for the real and imaginary parts of the classical
dielectric function [3, 5].

Thus, £2(k,w) (equation (10)) can be viewed as a generalization of £%(k,w)
{equation (16)), when the thermal de Broglic wavelength of the electrons is not zero but
finite. Further, as Iong as the mobile component, i.c. electrons in the present consideration,
follow the Maxwellian distribution of momentum, equation (10) incorporates the full
quantum-dynarnical behaviour of the system, i.e. it contains terms to all orders in A%, h
being the Planck constant.

Some of the studies on the equation of state of the fully ionized quantum plasma indicate
the presence of a AZlny, singularity [16] where A, = Z2e?/ApksT and y, = An/Ap
where Ap is the Debye screening length and is given as (dwnZ2e?/kpT)™'/?, ie. one has
essentially a contribution of the form In #, which yields a singularity when 7 = 0. However,
when one considers a plasma which js fully ionized and consists of an equal number of
oppositely charged particles, just as the case under consideration, ro singularity appears
when £ = 0 [16].

In the appendix we show that the expression for £2(k, ), i.e. equation (10} for the
OCQRHP, is in agreement with the alternative Green function formalism (the starting point
of which is a strongly degenerate dense plasma), under appropriate conditions for a quantum
hot rare plasma. Since the complex dielectric function has both &k and o dependences, this
can be used to study various physical processes which are dependent on the full (%, w)
such as light scattering, positron annihilation rate and AC conductivity, as has also been
alluded to earlier.

2.2. Dynamical structure factor

The general expression for S(k,w) using the linear response function [£(k,w)]™! and
fluctuation—dissipation theorem is given as follows [2,6]:

n k? 1
S(k'w)=_?a;EIm[e(k,w)] (19)

where k2 = 1/A%, Ap is the Debye screening length. For the OCQRHP, it can be written
as

n k2 e2(k, w)
7w kZ [(e2(k, w))? + (2 (k, ©))?]
where alg (k. w) and 829 (k, w) are given by equations {10) and (11). Substituting for afz(k, w)
and £2(k, w) in equation (20), one gets S2(k, w) as

n 1
V2w [(ef (k, @) + (£ (k, @))?]

Sk, w) = 20)

Sk, w) = Pk, w) 21

with

my 1

© rk Y
PO = {CXP [_ (ﬁkv B 2J§mv) ]

» hk Y
_exp[_(ﬁkV-l_ZﬁmV)j“. (22)
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When w = 0, the quantum expression for the zero-frequency dynamic structure factor
§2(k, 0) is given as follows:

1 1 h2k?
0, 0) = =~ exp{ e 23
SO = e oW e"p( 8m2v2) 23)
where elg(k, 0) is given by equation {12).
The static structure factor S{k) can be written as

Sik) = foo Sk, w)dw. 24)

-G

Using equation (19) in the Kramers—Kronig relation

1 1 [ 1 { ,
lm R LG @s)e @

the expression for the quantum static structure factor S2(k) can be obtained as

59k = _k L (26a)
K2 | 2k, 0)
which is equal to
C(khgp k>
Qupy = 7" 26b
ST k2 + k2 C k) (265)
where equation (12) for EIQ (k, Q) is written as
kz
k.0 = 1+ FClkim). @n

2.2.1. Classical cases. When h =0, elg (k, @) and azg(k, @) reduce to their corresponding
classical parts as given by equations (15)—(18).

Similarly, when k = 0, the quantum expressions for S2(k, @), S2(k, 0) and S9(k) all
reduce to the corresponding classical expressions given as follows;

ol _nk &5 (k, w)
§7 k@) = nw k? [(e5'(k, w))? + (€5 (k, w))?] @8
ol _n 1 _L
SO = e TRy @
and
SYk) = K210 + k2. (30)

3. Results and discossions

Equation (10} is the full wavevector- and frequency-dependent complex dielectric function
for the OCQRHP.

This expression is different from that derived for the dense electron gas in metals [7)
which even in the classical limit, when the Fermi-Dirac distribution function goes over to
Maxwellian, is accompanied by the local field correction factor G{k). In the random-phase
approximation G (k) = 0 and, when the appropriate classical limit is taken, the expression
for e(k, w) turns out to be the same [8] as obtained by others [15] earlier. However, this



Collective modes in OCCRHP and OCQRHP 8411

work, although correct for w/kV « 1, yields a divergent unphysical result when w/kV 3 1
(appendix). Such is not the case in the present formalism. Equation (10) reduces correctly
to the case of a classical plasma given by equations (17) and (18), representing the real and
imaginary parts of the dielectric function, when the Planck constant # is put equal to zero.
As is evident from equations (10) and (16}, the real part of £(k, e) contains a series, which
has to be properly evaluated for a mode in a given physical system, specified by its density,
temperature and mass. For example, in the case of & (k, w) for small values of w/kV,
it reaches a convergent result even for small number N of terms but, as w/kV increases,
one faces a convergence problem. It is only when the number of terms is taken to be quite
large (sometimes as large as 160 terms) that one obtains a convergent result. This problem
of convergence is less acute in the case of g (k w}. No such difficulty is encountered in
the evaluation of £;(k, @), in both cases, as it is an exponential function in [—(w/./2kV)?].
Keeping this in mind, one can study the various properties of the plasma dependent on &
and w.

It may be noted that e9(k,w) and £(k,w) given by equations (10) and (16),
respectively, are valid for all values of w/kV and reduce correctly to the respective cases
when @/kV « 1 and @/kV 3> 1. For o/kV <« 1, &(k, ) approaches [1 + w3/k*V?]
[2] and, for w/kV > 1, it approaches (I — w}";/kzvz) {2]). Similarly, for @/kV <« 1 [15],

alg(k, w) reduces to
wim @ hk 1 w hk 2
ko) =+ [z(ﬁkv +2ﬁmv) {H‘E(ﬁkv +2J§mv) +}
_2( ©  hk )[Hl( w  hk )2+”
V2RV 22mV 3\V2kV  242mV
and, for w/kV > 1, it approaches
(kw)—l“f'w/i [exp[—( @ + i )2]( @ + hk )
Vhi? VIRV 22mV V2RV 242mV
x[1+1( o bk )2+_“}_BXP[_( w )2j|
3\V2kV  24/2mV N2V 22mV

* (J;cv - 2\/115’;11/) {1 +%(\/;kv - 2«/I%fnv)2+””'

We shall discuss these further, later.

In order to study the collective modes of the plasma, one demands that £;(k, @) = 0. For
example, in earlier studies [1], the collective modes for the OCCRHP have been determined
in the region e/ %V > 1 using the approximate &;(k, w) given as follows:

w)y 3k2V?
£ (k, w)—l-—(1+ ) (31
CU Cr)
One obtains rather easily the approximate w versus & relationship, i.e.
5 3k% 29
W= w 1+ k_2 (32)

To study collective modes of plasma for any value of w/kV, one will have to solve
equation (17) for its zeros. This involves solution of a polynomial of very high degree
in (w/kV)?. (The polynomial structure of the equation for any value of (w/kV) can also
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be seen by shifting the exponential.) It, therefore, becomes quite difficult to obtain collective
modes using this approach.

As has been emphasized in section 2, collective modes are also given by singularities of
S{k, @). For the quantum and classical cases, therefore, these can be determined by finding
numerically the singularities of equations (20} and (28), respectively. S(k, ¢) satisfies the
sum rule given by equation (24), which can be determined using the computed S(k, w)
and also using other algebraic forms given by equation (265) for the quantum case and
equation (30) for the classical case. The sum rule, which is essentially the static structure
factor of the plasma, thus determined in two different ways ensures the correctness of the
calculations. Further, the collective modes thus determined can be used in the expression
for &, (k, w) to check its approach to zero. This procedure further confirms the correct
determination of the collective modes. One can also check their correctness for w = 0,
by determining the values of S2(k, 0) and S%(k, () given by equations (23) and (29) for
quantum and classical plasmas, respectively, with the corresponding calculated values using
S2k, w=0) and 5k, w = 0).

The collective mode for a given & is said to be well defined when S(k, &) shows an
extremely sharp increase near a given frequency. The full width at half-maximum represents
the damping of the modes. (In the case of monatomic liquids [19] this width represents
the extent of disorder. S{k, w) in the case of the corresponding crystal is a delta function
[18].) To iliustrate these points we consider an example of an OCCRHP which can be easily
obtained in an n-type semiconductor [17}. The mobile particles in this case are electrons.
The plasma is considered to be at the temperature 297 K, having an electron number density
of 3.9 x 10'® cm™3 which corresponds to r; 2 39.42 A. The plasma frequency w, is equal
to 0.088 eV, where the mass of the mobile component is equal to 0.7m, {m, is the mass of
an electron). We have evaluated Ef! (%, w) using equation (17), taking k = 4.25 x 10% cm™!
which corresponds to A = 3.75r;. In figure 1 is shown the variation in sf" (k, w) with
differcnt values of w/kV. As discussed earlier, ef’(k,w) yields different vaiues for large
values of w/kV when the number of terms taken is different. For instance, as shown in
figure 1, when w/kV = 6, one gets sf’ k, w) = 5.8 when N = I8, which reduces to 0.6
when ¥ = 35 and converges to 0.5 when N = 50 and remains so for larger values of ¥.
Thus, for this case the converged resuit is obtained when N 2 50. Similarly for w/kV
equal to, say, 9 the converged result is obtained when N is around 100. When e/kV is still
larger, equal to, say, 15 (not shown in the figure}, then convergence is obtained at around
N = 160. Correctly computed values of aff {(k, @) are shown in figure 1 by the full curve.
It has a value around 16.24 for w/kV = O which decreases as w/kV increases. It becomes
negative when w/kV les between 1.4 and 4.25 with a dip at w/kV =~ 2.05. For w/kV
greater than 4.25, its value slowly increases and tends to one for larger values of w/kV.
The variation in £ (k, w) when w/kV <« 1 is exactly the same as that given by Ichimaru
[2]. Similarly, when w/kV > 1, the results are again the same as that given by Ichimaru
[2], which corresponds to the expression

wz
s1{@) =1— ;‘; (33)

an expression which is independent of & and is the well known Drude model. Therefore, the
analytical expression for 5 (k, w) given by the equation (17) for a system yields correctly
the values of ef’(k, w) for any value of w/kV.

Now we relax the condition that the plasma is classical and incorporate its quantum-
mechanical nature. For the system under consideration A, > 91.6 A, which is comparable
with 2r,. We, therefore, now study £%(k, w) of the plasma using equation (10). From
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Figure 1. Variation in the real part of classical, wavevector- and frequency-dependent dielectric
function, given by equation (17) with the angular frequency & expressed in terms of &V,
for wavevector & = 4.23 x 10° cm~! in the OCCRHP, having the number density equal to
3.9 x 10" cm™3, of the mobile electrons, at temperature T = 297 K. V(= /kgT/m), kg is
the Bolezmann constant and m is the mass of the electron taken to be 0.7m,. Broken curves
represent the calculated values of ¢ "(k @) when the number N of terms in its evaluation using
equation (17} are taken to be 1§, 26 35, 50 and 100. For w/kV < 4 the results are convergent

for even smaller values of N(= 12).

equation (10) for & (k ), it is evident that the ratio R(= hk/mV) may be chosen as
a parameter to indicate the deviation of a system from the classical. When R — 0, the
system approaches the classical description and, as R increases, it exhibits more and more
quantum-mechamcal behaviour described by equations (11} and (10}, In figure 2 are plotted
£ (k w) with @/kV given by equations (11) and (10} for the plasma under consideration,
for different values of R. When R is equal to 0.0001, the values of 3{2 (k, w) correspond
closely to the classical variation in £ (%, ) as calculated from equation (17) and shown
in figure 2. As R increases, elg(k, ) becomes increasingly different from sf"(k,m), for
different values of R equal to I, 2, 3 and 5. While for R = 1 the difference between
the two is slight, for R = 3 it is significant particularly for w/kV lying between 0 and
approximately 35, as is clear from the figure. For R = 5, the difference becomes more
pronounced. The effect of increasing R results in a decrease in the value of slg (k.0}, its
broadening for low values of w/kV, a shift in the negative region to higher w/kV-values
and a decrease in the depth of the negative valley, as is evident from the figure. There
is little difference between £ (k @) and af’(k w} for w/kV greater than 6. Hence the

difference between £; (k w) and sf’(k w) is significant when w/kV is small.
In figure 3 are plotted &5 (ic w) given by equations (11) and (10) for different values of

R together with &5 !k, w) given by equation (18) with w/kV. When R = 0.0001, &5 (k. @)
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8

16

Figure 2. Vana.uon in the real part of the quantum wavevector- and frequency-dependent
dielectric function £) (k w) given by equation {10), with the angular frequency w expressed
in terms of kV, for ¥ = 4.25 x 10% cm™!, in the OCQRHP having the number density
n =135 % 1018 em™? at remperatere T = 297 X, for different values of quantum parameter
R(= hk/mV) = ¢.000%, 1, 2, 3 and 5. k is the Planck constant. Variation in el &, w] for

R = 0.0001 corresponds very closely to that of classical g;(k, w). All resuits for e (k w)
comespond 1o the properly converged values of the series occurming m eqn:.mon (10), The inset
shows the variation in the classical approximate dielectric function e: “(k, w) calculated using
equation (31) with ew/kV.

is very close to that calculated from &§'(k, w). As R increases, the difference between
&5 (k, w) and sg’ {k, w) increases, as shown in the figure. The effect of increasing R results
in the broadening of the function, lessening of the peak vatues, shift in the peak values to
higher w/kV-values and rounding off of the peak values as evident from the figure. As
R increases, while there is a decrease in Landau damping for small values of w/kV, there
is an increase in the damping for larger values of w/kV in comparison with the Landau
damping in the classical case as is clear from the figure. The extent of Landau damping is
also more in the quantum-mechanical case in comparison with the corresponding classical
situation.

We now turn to the study of collective modes in the system. We consider first the
classical case. S%(k,w) as the second inverse s~' has been computed by making use of
equation (28). The precaution that one has to take is to use correct values of £ (k, w), as
has been discussed earlier. For k = 4.25 x 108 cm™!, the variation in S%(k, co) with w
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2[a] R=0.0001 o1

{b)

i

10

I
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Wiy —=

Figure 3. (a) Variation in the imaginary part of the quantum wavevector- and frequency-
dependent dielectric function azgfk. w), given by equation (10} with w/kV, for k& = 4.25 x
105 em™! in the QCQRHP having the number density n = 3.9 x 10'¥ cm™3 ar temperature
T = 297 K for different values of quantum parameter K = 0.0001, I, 2, 3 and 5. Variation in
£2(k, ) for R = 0.000] corresponds very closely to that given by §'(k, ). (b) Veriation in
the computed values of the static structure factor S(k) of the one-component plasma for different
values of wavevector k. — - —, classical plasma; ——, quantum plasma.

has been plotted in figure 4. There is a sharp peak for & = 0.098 eV which corresponds
to a we]l defined collective oscillation in the system. For this mode, s‘,” (k, w) is nearly
equal to zero when the number of terms in its polynomial is equal to 160. As 59k, w) is a
symmetric function, we get exactly the same variation when o goes to —ew. The zeroth sum
rule given by equation (24) using the calculated values of Sk, w) is found to agree with
the calculations done using equation (30). Similarly S (k, @ = 0) from the calculation of
Sk, @) is found to agree with the calculated values using equation (29).

As the approximate expression for &; (k, @) given by (31) plotted in the inset of figure (2)
is widely used, we have computed S(k, w) for this case too and, in order to differentiate it
from S¢(k, ) discussed so far. we denote it by S %(k, w). The expression for £,(k, @) in
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Figure 4. Dynamicat structure factor S(k, &) in the second inverse s~ ! for the one-component
rare hot plasma {n = 3.9 % 1018 em™3; T =297 K) for k = 4.25 x 10% cm™*: - - —, when the
plasma is considered 10 be classical; ——, when the plasma is taken to be guantum.

this study is the same as in the earlier study, i.e. given by equation (18). The calculated
values of $%(k, w) (curves 3 and 4) together with S(k, w) (curves 1 and 2) are plotted
in figure 5 for two values of & (4.25 x 10% cm™! and 6.2 x 10° cm™).

In contrast with $%(k, @) for a given k, §°°(k, w) has a zero value at w = 0, peaks at
a lower energy, is broader and has a smaller value of the peak as is evident from figure 5,
However, the static structure factors in the two cases are not very different from each other.
For instance, for k = 4.25 x 10° cm™!, 502 (%) = 0.066 while $(k) = 0.061. Thus, one
concludes that $¢(k, w) is different from the corresponding S¥2(k, w).

§¢ (k, w) for different values of ¥ have been computed and the different parameters such
as the position of w where the function peaks, its value, the full width at half-maximum,
S (k,0) and S(k) are determined. In figure 6 are plotted @ versus k results for the
collective modes. For k = 0, @ = w,(= 0.088 eV) which is the same as for the Drude
model. As k increases to k ~ I x 10° cm™, there is little increase in the value of w.
When & > 1 x 10 cm™!, the increase in w from @, becomes apparent and agrees with
that given by the approximate £ (k. w), i.e. equation (31) up to k ~ 2 x 10° cm™'. For
k > 2 10° cm™! the difference between the collective modes given by the exact dielectric
function and that given by the approximate dielectric function becomes noticeable. The
position of the collective mode in the exact case is at a higher energy in comparison with
that given by the approximate case, as is clear from the figure. In contrast, the Drude
model yields the collective mode position to be at w, for all values of k. Thus, the present
investigation gives a dispersion relationship different from both the Drude model as well as

the approximate dielectric function of the hot plasma.
The positions of the full width at half-maximum have been plotted in figure 7(a) for
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Figure 5. Comparison of dynamical strucrure factors for the OCCRHP (n = 3.9 x 10'8 em™%;
T = 297 K). $4(%, @) are computed from equation (17) with the approximate S%(k, &)
computed using equation (31) for the two values of £ (4.25 x 10° em™? and 6.0 x 105 em~'), In
the inset are shown the details of 5% (%, ) and S (&, &) for e less than 0,08 eV, Curves 1 and
2 correspond to 59 (k, «) for &k = 4.25 x 10% cm~! and 6.0 x 10° cm™!, respectively. Curves 3
and 4 correspond to $9(k, w) for k = 4.25 x 105 cm™! and 6.0 x 10% cm™!, respectively.

different values of k. S%(k, w) is an extremely sharp function for small values of k up to
k= 2 x 10° cm™! and therefore the damping is very small and hence the full width at
half-maximum is nearly zero. As k increases, this width increases as shown in the figure.

In figure 7(b) are shown the values of the peaks of the collective modes for different
values of k. As £ increases, the peak valucs decrease and are quite different in the exact
and approximate cases.

In figure 7(c) are shown Sd(k, 0); curve 2 is for different &. For k < 1 x 10° cm™t,
Sk, 0) = O starts to increase slowly and then sharply as & increases as shown in the
figure. S¢9(k,0) is zero for all values of k! In the inset of figure 3 are shown the static
structure factors S(k) for different values of k. For k = 0, 8{k) = 0 and increases mildly
as k increases up to & = 1 x 10% cm™! beyond which it increases perceptibly as is clear
from the figure. S°2(k) are slightly different from the corresponding S (k) for different
values of £ as has also been noted earlier. ‘

Strictly speaking, the system needs a quantum-mechanical description as A, is
comparable with the mean interparticle distance. Using the expression for S2(k, ) given
by equation (20), computations have been made. It may be emphasized that, for each k,
the zeroth sum rule, i.e, $(k) from equation (24) and using equation (28) are the same,
Similarly S2(k, 0) from the calculated S€(k, w = 0) and from equation (23) are also in
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Figure 6. Varation in cellective mode angular frequency w, with the wavevector & (i,
dispersion relationship) for 2 one-component kot rare plasma (7 = 3.9 x 108 em™3; T = 297 K)
under different considerations: curve I, quanturn plasma (equation (10)}); curve 2, classical
plasma {equation (17)); curve 3, classical approximate plasma (equation (31)); line 4, classical
plasma described by the Drude roodel (equation (33)).

agreement. Further, the collective mode determined by the value of w at which the peak
occurs and corresponding & have been used to evaluate slg(k, w) which turns out to be very
close to zero, when N = 100. SP(k, w) with o for k = 4.25 x 10 ecm™! is plotted in
figure 4 for comparison with the corresponding classical case. S2(k, w) peaks at a higher
value of energy, is broader, is less peaked and has a lower value of S (%, 0) in comparison
with the corresponding S°(%, 0), as is clear from the figure.

Thus, the collective mode in the quantum-mechanical description of the system is not
as well defined as in the classical case because of the broadening of the peak structure of
S€(k, w). The disorder in the sysiem is substantially increased in comparison with that in
the classical case.

In figure 6 are plotted the peak positions where the collective modes occur for different
values of k. When k is small, the collective mode is present at the same frequency as in the
classical case. When k becomes approximately equal to 1.5 x 10° cm™), it starts to deviate
and keeps increasing with increase in & as shown in the figure, For k =~ 6 x 10% cm™',
the difference is quite large. Thus, the collective mode occurs at a higher energy in the
guantum-mechanical case than in the corresponding classical case when & lies between, say,
2 % 10% cm™ and 6 x 10° cm™!.

In figure 7(a) are plotted full widths at half-maximum for different values of k. The
width in the quantum-mechanical case is more than in the corresponding classical case while
this difference is small for small values of k < 2 x 10% cm™". It becomes significant with
increase in the value of k as shown in the figure. It is 2 maximum for k = 6 x 10° cm™!,
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Figure 7. (a) Variation in the full width A at half-maximum of the dynamical structure factor
with wavevector & for the one-companent rare hot plasma {# = 3.9 x 10!® cm™% T = 297 K)
under different conditions: curve 1, quantum plasma; curve 2, classical plasma; curve 3, classical
approximate plasma. (b} Variation in the maximum value of the dynamical structure factor ie.
S™4% (k| @} with wavevector & for the one-component rare hot plasma (n = 3.9 x 10'8 em~3;
T =297 K) under different considerations: curve 1, quantum plasma; curve 2, classical plasma:
curve 3, classical approximate plasma. (c) Variation in zero-frequency dynamical structure factor,
ie. Stk, ) with & for the one-component rare hot plasma (z = 3.9 x 10!% em™%; 7 =297 K}
under different conditions: curve 1, quantum plasma; curve 2, classical plasma; x axis, ie.
Stk) = 0, classical approximate plasma.

the largest value of & considered here.

In figure 7(b) are plotted the vaives of peak of the collective modes, i.e. S{k, w = @;)
for different k. In comparison with the corresponding classical values, Sk, w.) peaks
have lower values as shown in the figure.

In figure 7(c) are plotted S2(k, Q) together with the classical result. For small &, the
two are very close to each other and, even for larger &, the difference is not that significant
as shown in the figure. Only when & > 2 % 105 cm™!, does § Q(k, 0) show a sharp decrease
and it continues for larger values of &.

In the inset of figure 3 are shown S€(k) for & lying between 0 and 6 x 10° cm™. For &
between 0 and 2 x 10° em™!, S€(k) is close to S¢/(k). For & greater than 2.5 x 10 cm™!,
S2(k} is less than $°(k) as shown in the figure. For £ = 6 x 10° cm™!, the difference
between S2(k) and $¢(k) is a maximum.
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4, Conclusions

Equations (11) and (I6) are analytical expressions for £9(k,w) and £k, w) for the
QOCQRHP and the OCCRHP, respectively. These correctly describe the dynamics of the
plasma for all values of wavevector and frequency.

The expression for the quantum-mechanical case, EIQ (k. w), is quite different from the
corresponding classical expression £5(k, w). It reduces correctly to the classical case when
h — 0 and gives quite a different dynamical description of the plasma when the quantum
parameter Ak/mV is large. This is reflected in the study of colfective modes of the system
which are quite different from the corresponding classical case, particularly for high values
of the wavevector.

Equation (17) for sf" {(k,w) gives a very different result for larger values of w/&kV, in
comparison with the approximate &§"*(k, w) used widely.

The effect of incorporating the quantum-mechanical nature of the plasma results in
introducing a sort of disorder in the system (as exhibited by the broadening of the peak in
the dynamical structure factor S(k, w) of the plasma). This disorder increases with increase
in the value of the wavevector.

It is clear from the study that for a thermal plasma the correct dielectric function is both
k and @ dependent, 1t is, therefore, not quite correct to treat such a plasma using the Drude
model {17] which is independent of the wavevector.
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Appendix

Using the Green function formalism, the expression for the dielectric function e(k, &) for
the strongly degenerate case can be written as follows [15]:

etk,wy =1+ V{k)F(k, w+in) (Al)
where
V(k) = dme?/k?
and
3= p—
FOR, o +im) = -2 f (2,,’;3 = ﬁfﬁ sgj;]h = (A22)
= Fk, w} +iF(k, w) (A2b)

where n§ and n§, - are the distribution functions at the momenta £ and k + j, respectively,
and correspond to the Fermi-Dirac distribution functions.

In order to obtain £(k, w) for the OCQRHP, one has to substitute for »{ and n{. p in
equation (A2a) the following expressions:

2,2
nY = exp(Bu) exp (—- ﬁ:’: ) (A3a)



Collective modes in OCCRHP and OCQRHP 8421

and

(A3b)

2m

hﬂ k 2
ng4p = exp(Bu) exp (—E—(+—‘D))

where
exp{Bu) = %nkfh.

Using the Dirac identity given by equation (4) and simplifying, one can obtain the following
expression for Fy{k, w):

12 2,2 2
0 —[(Z "y 2 _ Rk e
Fz(k“")_(zkgr) Rk e"p( 8kaT)exP( 2k2k3T)

h h
[on(ir) (5]

Equation (A.4) is the same as equation (3).
One can obtain F,o(k, w) after using the transformations

[ 2
o = X2 Xz=_@(2+ﬁ")

m 2 \%x " 2m
and
mfw kN
Y2=%(E+-2—m-) (A5)

and simplifying to get the following expression:

o oy o (N1 f“ dx _( :’2)2
Fl(k"”)‘m(kgT) ) r=x |\ X+ 3

_ f_: :rd-)-{X exp [_ (X - gﬂ} . (A6)

Equation (A6) can be transformed into the following expression:
172 1/2 172
‘e wy= [ E) R N2 L BN I (mEY T (el B
Fl(k"")_(z) fzk[(p{(?.) (k+2m P17 X 2m
(A7)

with

o0 2
®(z) =:r'”2Pf 4R (AB)

-0 z—1
Equation (A7) is the same as equation (9). In the Green function formalism [15], only
approximate expressions for ®(z) have been obtained for z 33> 1 and z « 1.
While, @(z} is convergent for z < 1, it is divergent for z 3> 1. One can examine it
by the ratio test. The ratio R of the nth to (n — 1)th terms of &(z) for z 3> 1 [15] is as
follows:

2
ReZ(e-200) 0
n

In the limit # — oo, R — o< and, therefore, the series diverges. Hence £;(k, @) will also
diverge, This is true for both the cases of z, i.e. z, and z_ given as

. = w+ hik
+«/§kV 2/2mV
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and
w hk

- = - .
N2V 22mV

In g;(k, @) calculations, the series containing z- increases much more rapidly than that
containing z,. The net result is a divergent g;(k, w) which is an unphysical resuit. Such a
situation does not occur for 7 < 1, and in this case &,(k, @) is convergent,

The ratio R of the ath to (n — 1jth terms in the series for ¢k, w} in our expression
given by equation (10) for both £ 3> 1 and z & I is given as follows:

_ 2 2=1/n)

n2 (24 1/n)

For any z, as n tends to o0, R — 0. This is true for both z.. and z_. We therefore obtain
a convergent value of £1(k, ) for all values of z.

We have also done explicit numerical calculations for various terms (i.e. n) for R, using
equations (A9) and (A10} and the numbers do confirm the above results.

(Al0)
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