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one-component rare hot quantum and classical plasmas 
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Depanment of Physics and Astrophysics, University of Delhi, Delh 110007. India 
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Abstract. An analytical expression for the complex dielectric function E @ ( k .  w )  = Ef (k .  w )  + 
iEf(k. 0) far B one-component quantum hot rare plasma. valid far all values of the wavevector k 
and angular frequency w. has been obtained using the two-panicle quantum distribution function. 
It contains te rm of all orders in h2 and reduces to &(k, w),  suggested earlier by us. when 
Planck's constant h = 0. e f ( k ,  w )  yields a convergent value for ( o l k v )  >> 1, unlike that given 
by the Green function formalism, when a large number of t e rm in the series are summed (V 
being the thermal velocity). 

Expressions for the dynamic structure factors S Q ( k , o )  and SQ(k ,w = 0) and the 
static Structure factor S Q ( k )  have been obtained which reduce to the corresponding classical 
expressions when h = 0. 

Computations for one-component quantum and classical plasmas in an n-doped 
semiconductor having an electron density of 3 . 9 ~  10l8 cm-l at 297 K have been made. E?(k. w ) .  
cf(k. U ) ,  S@(k ,  U ) ,  etc. turn out to be quite different from the corresponding classical functions 
when hklmV > 1 (m being the mass of the mobile component). SQ(k .  o), the singularity of 
which represents the collective mode. shows a smaller peak and its width is much broader in 
comparison with that of the corresponding Sc'(k,  w) .  The quantum-mechanical nature of the 
plasma thus introduces a son of disorder in the plasma. 

1. Introduction 

A one-component rare plasma occurs in various physical situations such as the ionosphere, 
intergalactic space and doped semiconductors at appropriate density and temperatures. 
In such a plasma, only one component is mobile while the other is taken to be static 
and is essential for maintaining the charge neutrality of the plasma. The plasma is in 
thermodynamic equilibrium at a finite temperature (hot plasma); therefore, its collective 
modes are wavevector dependent [I ,  21. The complete dynamical information about such 
a system is contained in the frequency U(= o/Zrr) and wavevector Ikl-dependent (where 
Ikl = 2 r / A  with A the wavelen,$h and w the angular frequency) complex dielectric function 
&(k,  U ) ,  of the plasma. The real part of the dielectric function with put equal to zero and 
solved yields the collective modes of the plasma [Z]. The imaginary part represents the 
damping of these modes. The plasma exhibits well defined collective modes when the 
damping is small. 

Collective modes of the plasma can also be determined from the singularities of the 
dynamical structure factor S ( k , w ) ,  which can be obtained from the response function 
I/&@, 0) using the fluctuation-dissipation theorem [Z, 61. 

t Author to whom correspondence should be addressed. 

0953-8984/95/448405+18$19.50 @ 1995 IOP Publishing Ltd 8405 



8406 S P Tewari et a1 

When the mobile component forms arare gas, there is hardly any interparticle interaction 
and one can use the Maxwellian distribution function for its momentum in the evaluation 
of & ( k .  w )  [3-51. In such a study, it is assumed that the mean interparticle distance Zr, 
(r, being the radius of the sphere assigned to each particle; r, = (3r1/4a)’/~ where n is 
the number density of particles) is very large in comparison with the thermal de Broglie 
wavelength A,* (= h / m  where h is the Planck constant, m the mass of the mobile 
component, ks the Boltzmann constant and T the temperature of the rare gas); therefore, the 
plasma is referred to as a one-component classical rare hot plasma (OCCRHP). However, 
there may be a situation in practice where such an approximation is not valid; one will, 
therefore, have to take into account this quantum-mechanical effect. In this case the plasma 
is referred to as a one-component quantum-mechanical rare hot plasma (OCQRHP) or 
weakly degenerate rare plasma in contrast to the case of a metal where the plasma is dense 
and strongly degenerate [7,8]. The general complex dielecvic function for such a plasma has 
hardly been investigated. It is, therefore, worthwhile to study and compare the wavevector- 
and frequency-dependent collective modes in an OCQRHP and an OCCRHP. In addition, 
knowledge of the full ~ ( k ,  w )  is essential to evaluate various physical quantities such as the 
loss of energy of a charged panicle [7,9] passing through it and the build-up of the mobile 
component about a finite mass charged impurity [5] which may also yield the positron 
annihilation rate [ lo]  in the plasma where electrons are the mobile particles. In this paper 
we have derived an explicit expression for an OCQRHP using the two-particle quantum 
distribution function, studied its various cases and investigated the wavevector-dependent 
collective modes for both an OCQRHP and an OCCRHP. 

In section 2 we give different mathematical formulations. The results and discussion 
are given in section 3, followed by the conclusions in section 4. 

2. Mathematical formalism 

2. I .  Dielectric function 

The expression for the wavevector- and angular-frequency-dependent dielectric function 
cQ(k ,w) ,  for a one-component quantum plasma, in terms of two-particle quantum 
distribution functions f&. w) is given as follows [ll]: 

E @ ,  0) = 1 + - [ f + ( k ,  0) - f - ( k ,  w)l. (1) 
2 n i  

h 

The expression for the quantum two-particle distribution function when the single- 
particle momentum distribution function fo(p) is taken to be Maxwellian (i.e. f o ( p )  = 
Aexp(-p2/2mksT)) as is appropriate for the one-component rare hot plasma is given as 
follows [ l l ,  121: 

( w - k - p f m f i s )  

where e and p are the charge and the linear momentum of the electron respectively. 
Substituting for f i ( k ,  w )  from equation (2) in equation ( I )  and solving for the limit h = 0, 
it can be shown that equation (1) reduces to the following well known classical expression 
obtained from the collisionless linearized Boltzmann transport equation [4]: 

d p  ~ ‘ ~ ( k , ~ ) = l + - k .  - 4nez k2 ./ afi7 (w - k . p /m + ie)’ (3) 
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Making use of the Maxwellian momentum distribution function in equation (2), and the 
Dirac identity 

x + is (4) 

one can solve for the imaginary part of f*(k, w )  after assuming IC to be parallel to the z 
axis, without any loss of generality, to obtain the following: 

Im f*(k, w )  = p* B T  k’ exp (-E) 8mkBT (-&) 2k’k~T 

X exp - -exp -- [ ( 2 i r T )  ( 21”rT)]. 
The value of A is evaluated using the following sum rule: 

7r 
wIm[&(k,o)]dw -w2 2 p  

where up(= 
equations (4) and (2) one obtains for the real part of f * ( k ,  w )  

is the angular plasma frequency of the electrons. Using 

where w’ = kp,/m, Using the transformations 

to simplify equation (7), one obtains 

with D = kh,h. Equation (8) can be rewritten as 

where p = l /kBT and 

After solving the principal value integral occurring in (8) one can write the complete 
dielechic function for the OCQRHP as 

hk hk 
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(exp(hw/2ksT) - exp(-hw/2ksT)) 

@(k, w )  = $(k, o) + i&f(k, o) (11) 
is the thermal velocity. Equation (IO) is the full quantum wavevector where V(= 

and frequency-dependent dielectric function of a one-component rare hot plasma. 
We now consider the particular cases of @(k. w )  given by equation (IO). 
When w = 0, $(k, w )  = 0 and $(k, w )  reduces to the following: 

&w2m 
$(k, 0) = 1 + L D e x p  Vhks (-;) [ 1 + ; (;r + (q + . . .] (12) 

which is the same as 

in agreement with the results obtained earlier [12,14,15]. When h = 0, equation (13) 
reduces to the well known classical expression [5,13] given as follows: 

0 2  

k 2 V 2 '  &f(k,O) = 1 + (14) 

When h = 0, &Q(k. w )  reduces to &(k, U ) ,  which can also be seen by putting equation (IO) 
in the following alternative form: 

eQ(k, w )  = &(k, w )  + h2 

i f i  +-- 128 m 4 V 6  [ Gv 7(&y-. , . ] }  +o ( h 6 ) + O ( h 8 ) + . . .  

(15) 

(16) 

where 

eC'(k, w )  = &:(k, w )  + isi'(k. o) 
with 

&:(k,o)=l+---- kZV? k2V2kZV2 
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and 

E:'(k,w) = 
2 k Z V 2  kV 

These are the well known expressions for the real and imaginary parts of the classical 
dielectric function [3,5]. 

Thus, & Q ( k , w )  (equation (IO)) can be viewed as a generalization of & ( k , u )  
(equation (16)), when the thermal de Broglie wavelength of the electrons is not zero but 
finite. Further, as Iong as the mobile component, i.e. electrons in the present consideration, 
follow the Maxwellian distribution of momentum, equation (IO) incorporates the full 
quantum-dynamical behaviour of the system, i.e. it contains tenns to all orders in hZ, h 
being the Planck constant. 

Some of the studies on the equation of state of the fully ionized quantum plasma indicate 
the presence of a A:Iny, singularity [I61 where A, = Zze2/hDkaT and ye = h , n / h ~  
where ha is the Debye screening length and is given as ( 4 7 ~ n Z ~ e ~ / k ~ T ) - ' ~ ~ ,  i.e. one has 
essentially a contribution of the form Inh, which yields a singularity when h = 0. However, 
when one considers a plasma which is fully ionized and consists of an equal number of 
oppositely charged particles, just as the case under consideration, no singularity appears 
when h = 0 [16]. 

In the appendix we show that the expression for & Q ( k ,  U ) ,  i.e. equation (10) for the 
OCQRHP, is in agreement with the alternative Green function formalism (the starting point 
of which is a strongly degenerate dense plasma), under appropriate conditions for a quantum 
hot rare plasma. Since the complex dielectric function has both k and U dependences, this 
can be used to study various physical processes which are dependent on the full ~ ( k ,  U )  

such as light scattering, positron annihilation rate and AC conductivity, as has also been 
alluded to earlier. 

2.2. Dynamical sfrucrure factor 

The general expression for S ( k . 0 )  using the linear response function [&(k,w)]-I  and 
fluctuation-dissipation theorem is given as follows [2,6]: 

where k? = I /Ab,  A D  is the Debye screening length. For the OCQRHP, it can be written 
as 

where & f ( k .  U )  and $ ( k ,  U )  are given by equations (10) and (1 I). Substituting for E f ( k ,  w )  
and & f ( k .  w) in equation (20), one gets SQ(k,  w )  as 

with 
hk 
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When w = 0, the quantum expression for the zero-frequency dynamic structure factor 
s Q ( k ,  0) is given as foliows: 

S P Tewari er a1 

n l l  
S Q ( k ,  0) = &&?(k, 0) k V  exp(-&) 

where t f ( k ,  0) is given by equation (12). 
The static structure factor S ( k )  can be written as 

m 
S ( k )  = S ( k ,  O) dw. 

Using equation (19) in the Garners-Gonig relation 
!, 

the expression for the quantum static structure factor S Q ( k )  can be obtained as 

which is equal to 

where equation (12) for $(k, 0) is written as 

k2 
k2 

E f ( k ,  0) = 1 -t -=C(k&) 

2.2.1. Classical cases. 
classical parts as given by equations (15)418). 

reduce to the corresponding classical expressions given as follows: 

When h = 0, E ,  Q ( k .  w) and @ ( k ,  w )  reduce to their corresponding 

Similarly, when h = 0, the quantum expressions for S Q ( k ,  U ) ,  S Q ( k ,  0 )  and S Q ( k )  all 

n 1 1 
& (1 + k! /k2 )2  E Sc'(k,  0) = - 

and 

S C f ( k )  = k 2 / ( k z  + k: ) .  (30) 

3. Results and discussions 

Equation (IO) is the full wavevector- and frequency-dependent complex dielectric function 
for the OCQRHP. 

This expression is different from that derived for the dense electron gas in metals [7] 
which even in the classical limit, when the Fermi-Dirac distribution function goes over to 
Maxwellian, is accompanied by the local field correction factor G ( k ) .  In the random-phase 
approximation G ( k )  = 0 and, when the appropriate classical limit is taken, the expression 
for &(k ,  w )  turns out to be the same [SI as obtained by others [15] earlier. However, this 
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work, although correct for w / k  V << 1, yields a divergent unphysical result when w /  k V >> 1 
(appendix). Such is not the case in the present formalism. Equation ( IO)  reduces correctly 
to the case of a classical plasma given by equations (17) and (lS), representing the real and 
imaginary parts of the dielectric function, when the Planck constant h is put equal to zero. 
As is evident from equations (IO) and (16), the real part of &(k ,  w )  contains a series, which 
has to be properly evaluated for a mode in a given physical system, specified by its density, 
temperature and mass. For example, in the case of &f'(k. w )  for small values of o l k V ,  
it reaches a convergent result even for small number N of terms but, as w l k V  increases, 
one faces a convergence problem. It is only when the number of terms is taken to be quite 
large (sometimes as large as 160 terms) that one obtains a convergent result. This problem 
of convergence is less acute in the case of E f ( k , w ) .  No such difficulty is encountered in 
the evaluation of EZ(k. w ) ,  in both cases, as it is an exponential function in [ - ( ~ / , / 2 k V ) ~ ] .  
Keeping this in mind, one can study the various properties of the plasma dependent on k 
and w. 

It may be noted that EQ(k ,w)  and EC'(k,w) given by equations (10) and (16), 
respectively, are valid for all values of o l k V  and reduce correctly to the respective cases 
when o / k V  (< 1 and o / k V  >> 1. For w / k V  << I ,  E f ( k , w )  approaches [ l  + w j / k 2 V 2 ]  
[2 ]  and, for o / k V  >> 1, it approaches (1 - w i / k 2 V 2 )  [ 2 ] .  Similarly, for w / k V  << 1 [15], 
E f ( k ,  o) reduces to 

& f ( k ,  O) = 1 + - + -) hk [ 1 + (- w + -y hk + . . .} 
3 &kV 2&mV g ? k 3 [ 2 ( &  2&mV 

and, for w / k V  >> 1 ,  it approaches 

E f ( k .  w )  = 1 + &* wim [exp [ - (- 0 + q] (- 0 + -) hk 
JXV 2 4 m v  Jxv 2 J i V  

We shall discuss these further, later. 
In order to study the collective modes of the plasma, one demands that ~ ( k .  w )  = 0. For 

example, in earlier studies [l], the collective modes for the OCCRHP have been determined 
in the region w / k V  >> 1 using the approximate ~ ~ ( k .  w )  given as follows: 

One obtains rather easily the approximate w versus k relationship, i.e. 

To study collective modes of plasma for any value of o l k V ,  one will have to solve 
equation (17) for its zeros. This involves solution of a polynomial of very high degree 
in ( o / k V ) Z .  (The polynomial structure of the equation for any value of ( w / k V )  can also 
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be seen by shifting the exponential.) It, therefore, becomes quite difficult to obtain collective 
modes using this approach. 

As has been emphasized in section 2, collective modes are also given by singularities of 
S(k ,  0). For the quantum and classical cases, therefore, these can be determined by finding 
numerically the singularities of equations (20) and (28), respectively. S ( k ,  w )  satisfies the 
sum rule given by equation (24), which can be determined using the computed S ( k ,  w )  
and also using other algebraic forms given by equation (26b) for the quantum case and 
equation (30) for the classical case. The sum rule. which is essentially the static structure 
factor of the plasma, thus determined in two different ways ensures the correctness of the 
calculations. Further, the collective modes thus determined can be used in the expression 
for ( k ,  w )  to check its approach to zero. This procedure further confirms the correct 
determination of the collective modes. One can also check their correctness for o = 0, 
by determining the values of SQ(k,  0) and SC'(k, 0) given by equations (23) and (29) for 
quantum and classical plasmas. respectively, with the corresponding calculated values using 
SQ(k,  w = 0)  and SCr(k, w = 0). 

The collective mode for a given k is said to be well defined when S ( k ,  w )  shows an 
extremely sharp increase near a given frequency. The full width at half-maximum represents 
the damping of the modes. (In the case of monatomic liquids [I91 this width represents 
the extent of disorder. S(k ,  w )  in the case of the corresponding crystal is a delta function 
[18].) To illustrate these points we consider an example of an OCCRHP which can be easily 
obtained in an n-type semiconductor 1171. The mobile particles in this case are electrons. 
The plasma is considered to be at the temperature 297 K, having an electron number density 
of 3.9 x 10'' which corresponds to r, rr 39.42 A. The plasma frequency wp is equal 
to 0.088 eV, where the mass of the mobile component is equal to 0.7m, (m,  is the mass of 
an electron). We have evaluated & y ( k ,  w )  using equation (17), taking k = 4.25 x IO6 cm-I 
which corresponds to A = 3.75r,. In figure 1 is shown the variation in &;'(k, 0) with 
different values of w j k V .  As discussed earlier, a f ' ( k , w )  yields different values for large 
values of o j k V  when the number of terms taken is different. For instance, as shown in 
figure 1,  when w / k V  = 6,  one gets &f'(k,w) 2: 5.8 when N = 18, which reduces to 0.6 
when N = 35 and converges to 0.5 when N = 50 and remains so for larger values of N .  
Thus, for this case the converged result is obtained when N 2 50. Similarly for w j k V  
equal to, say, 9 the converged result is obtained when N is around 100. When w j k V  is still 
larger, equal to, say, 15 (not shown in the figure), then convergence is obtained at around 
N = 160. Correctly computed values of &;'(k, 0) are shown in figure 1 by the full curve. 
It has a value around 16.24 for w j k V  = 0 which decreases as w / k V  increases. It becomes 
negative when o j k V  lies between 1.4 and 4.25 with a dip at w / k V  zz 2.05. For w j k V  
greater than 4.25, its value slowly increases and tends to one for larger values of w j k V .  
The variation in a:'(k, w )  when w j k V  << 1 is exactly the same as that given by Ichimaru 
[2]. Similarly, when w j k V  >> 1 ,  the results are again the same as that given by Ichimaru 
121, which corresponds to the expression 
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an expression which is independent o f k  and is the well known Drude model. Therefore, the 
analytical expression for &;'(k, w )  given by the equation (17) for a system yields correctly 
the values of & ; ( ( k , w )  for any value of w j k V .  

Now we relax the condition that the plasma is classical and incorporate its quantum- 
mechanical nature. For the system under consideration h,h Y 91.6 A, which is comparable 
with 21,. We, therefore, now study & Q ( k , w )  of the plasma using equation (IO). From 
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Figure 1. Variation in the real pm of classical, wavevector- and frequency-dependent dielectric 
function. given by equation (17) with the mgular frequency o expressed in terms of k V .  
for wweveaor k = 4.25 x IO6 cm-[ in the OCCRHP, having the number density equal to 
3.9 x 10l8 cm-l. of the mobile electrons. at tempemure T = 297 K. V ( =  m. ks is 
the Boltzmmn constant and m is the mass of the electron taken to be 0.7m,. Broken c w e s  
represent the calculated values of s?(k .  o) when the number N of term in i s  evaluation using 
equation (17) are taken to be 18. 26, 35. 50 and 100. For o / k V  < 4 the results are convergent 
for even smaller values of N(z 12) 

equation (IO) for & f ( k , w ) ,  it is evident that the ratio R(= h k / m V )  may be chosen as 
a parameter to indicate the deviation of a system from the classical. When R + 0, the 
system approaches the classical description and, as R increases, it exhibits more and more 
quantum-mechanical behaviour described by equations (11) and (IO). In figure 2 are plotted 
$ ( k ,  w )  with w / k V  given by equations (11) and (10) for the plasma under consideration, 
for different values of R.  When R is equal to O.OOO1, the values of $ ( k ,  w )  correspond 
closely to the classical variation in E:'@, w )  as calculated from equation (17) and shown 
in figure 2. As R increases, ~ ? ( k ,  w )  becomes increasingly different from ~ f ' ( k ,  w ) ,  for 
different values of R equal to 1, 2, 3 and 5. While for R = 1 the difference between 
the two is slight, for R = 3 it is significant particularly for w / k V  lying between 0 and 
approximately 5 ,  as is clear from the figure. For R = 5 ,  the difference becomes more 
pronounced. The effect of increasing R results in a decrease in the value of c f ( k .  0). its 
broadening for low values of w / k V ,  a shift in the negative region to higher w/kV-values 
and a decrease in the depth of the negative valley, as i s  evident from the figure. There 
is little difference between $ ( k ,  w )  and # ( k ,  w )  for w/kV greater than 6. Hence the 
difference between &f(k. w )  and &f'(k, w )  is significant when w / k V  is small. 

w )  given by equations (1 1) and (10) for different values of 
R together with E;'(k, 0) given by equation (18) with w / k V .  When R = 0,0001, $ ( k ,  w )  

In figure 3 are plotted 
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181 

0 

-2  

I 
~ 

Figure 2. Variation in the real pan of the quantum wavevector- and frequency-dependent 
dielectric function e P ( k , u )  given by equation (10). with the angulm frequency w expressed 
in Lem of k V ,  for k = 425 x IO6 cm-l, in the OCQRHP having the number density 
n = 3.9 x cm-) 3t temperature T = 297 K, for different values of q u a "  pammeter 
R(= hklml')  = 0.0001, 1, 2. 3 and 5. h is the Planck constant. Variation in e f ( k . u )  for 
R = 0.0001 correspands very closely to l b t  of classical e l  (k. 0). All results for e?(k. w )  
correspond 10 the properly converged values of the series occurring in equation (10). The inset 
shows the variation in the classical approximale dielecvic funcoon @'(k,iu) calculaled using 
equation (31) with u f k V .  

is very close to that calculated from &;'(k, U).  As R increases, the difference between 
$(k, w )  and &(k ,  w )  increases, as shown in the figure. The effect of increasing R results 
in the broadening of the function, lessening of the peak values, shift in the peak values to 
higher w/kV-values and rounding off of the peak values as evident from the figure. As 
R increases, while there is a decrease in Landau damping for small values of w / k V ,  there 
is an increase in the damping for larger values of wfkV in comparison with the Landau 
damping in the classical case as is clear from the figure. The extent of Landau damping is 
also more in the quantum-mechanical case in comparison with the corresponding classical 
situation. 

We now turn to the study of collective modes in the system. We consider first the 
classical case. Se'(k,  w )  as the second inverse s-' has been computed by making use of 
equation (28). The precaution that one has to take is to use correct values of &:'(k, U) ,  as 
has been discussed earlier. For k = 4.25 x lo6 cm-', the variation in S"(k, w )  with w 
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Figure 3. (a) Variation in the imaginary part of the quantum wavevector- and fttquency- 
dependent dielectric function s f ( k , w ) ,  given by equarion (IO) with 4 k V .  for k = 4.25 x 
IO6 an-' in the OCQRHP having the number density n = 3.9 x IO'* c N 3  at temperature 
T = 297 K for different values of quantum parameter R = 0.0001, 1. 2. 3 and 5. Variation in 
& f ( k .  w )  for R = 0,0001 corresponds very closely to that given by $(k. 0). (b) Variation in 
the computed values of the static smcture factor S(k) of the one-component plasma far different 
values of wavevector k: - - -. classicd plasma; -. quantum plasma 

has been plotted in figwe 4. There is a sharp peak for w = 0.098 eV which corresponds 
to a well defined collective oscillation in the system. For this mode, &;'(k, w )  is nearly 
equal to zero when the number of terms in its polynomial is equal to 160. As S"(k, w )  is a 
symmetric function, we get exactly the same variation when w goes to --W. The zeroth sum 
rule given by equation (24) using the calculated values of SC'(k ,  w )  is found to agree with 
the calculations done using equation (30). Similarly Scr(k,  o = 0) from the calculation of 
S"(k, w )  is found to agree with the calculated values using equation (29). 

As the approximate expression for q ( k .  w )  given by (31) plotted in the inset of figure (2) 
is widely used, we have computed S ( k ,  w )  for this case too and, in order to differentiate it 
from S"(k, w )  discussed so far. we denote it by SC""(k, w ) .  The expression for ~ 2 ( k ,  w )  in 
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2 

Figure 4. Dynamical svuclure factor S(k ,  w )  in 1he second inverse I C '  for the onecomponent 
m e  ha[ plasm (n = 3.9 x cm-'; T = 291 K) fork = 4.25 x IO6 cm-': - - -. when the 
plasma is considered io be classical: -t when h e  plasm is taken to be quantum. 

this study is the same as in the earlier study, i.e. given by equation (18). The calculated 
values of Scf .a (k ,w)  (curves 3 and 4) together with S"(k,w) (curves 1 and 2) are plotted 
in figure 5 for two values of k (4.25 x IO6 cm-' and 6.2 x IO6 cm-I). 

In contrast with S"(k, w )  for a given k ,  S".a(k, w )  has a zero value at w = 0, pe&s at 
a lower energy, is broader and has a smaller value of the peak as i s  evident from figure 5. 
However, the static structure factors in the two cases are not very different from each other. 
For instance, for k = 4.25 x lo6 cm-l, SeJ,'(k) = 0.066 while S d ( k )  = 0.061. Thus, one 
concludes that S C J ( k ,  w )  is different from the corresponding S"."(k, w). 

SC'(k,  w )  for different values of k have been computed and the different parameters such 
as the position of U where the function peaks, its value, the full width at half-maximum, 
S"(k ,O)  and SC'(k)  are determined. In figure 6 are plotted w versus k results For the 
collective modes. For k = 0, o = up(= 0.088 eV) which is the same as for the Drude 
model. As k increases to k Y 1 x lo6 cm-', there is little increase in the value of w. 
When k > 1 x lo6 cm-I, the increase in w from op becomes apparent and agrees with 
that given by the approximate q ( k . o ) ,  i.e. equation (31) up to k Y 2 x lo6 cm-I. For 
k > 2 x IO6 cm-' the difference between the collective modes given by the exact dielectric 
function and that given by the approximate dielectric function becomes noticeable. The 
position of the collective mode in the exact case is at a higher energy in comparison with 
that given by the approximate case, as is clear from the figure. In contrast, the Drude 
model yields the collective mode position to be at up for all values of k .  Thus, the present 
investigation gives a dispersion relationship different from both the Drude model as well as 
the approximate dielectric function of the hot plasma. 

The positions of the full width at half-maximum have been plotted in figure 7(a) for 
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Figure 5. Compuiison of dynamical structure facrors for the OCCRHP (n = 3.9 x 10l8 cm'l; 
T = 297 K). S " ( k , o )  are computed from equation (17) with the approximate S",'(k,w) 
computed using equation (31)  for the two values ofk ( 4 . 2 5 ~  IO6 cm-I and 6 . 0 ~  IO6 cm-'1. In 
the inset are shown the details of S"(k, w )  and Sc'.'(k. o) for w less than 0.08 eV. Curves 1 and 
2 correspond to S"(k. w )  fork = 4.25 x IO6 cm-' and 6.0 x lo6 an-', respectively. Cwes 3 
and 4 correspond to Sc',L(k. w )  fork = 4.25 x IO6 cm-' and 6.0 x 10' cm-'. respectively. 

different values of k .  SC'(k, w )  is an extremely sharp function for small values of k up to 
k zz 2 x lo6 cm-' and therefore the damping is very small and hence the full width at 
half-maximum is nearly zero. As k increases, this width increases as shown in the figure. 

In figure 7(b) are shown the values of the peaks of the collective modes for different 
values of k .  As k increases, the peak values decrease and are quite different in the exact 
and approximate cases. 

In figure 7(c) are shown SC'(k, 0); curve 2 is for different k .  For k 5 1 x 10' cm-I, 
S"(k,O) = 0 starts to increase slowly and then sharply as k increases as shown in the 
figure. S"."(k,O) is zero for all values of k !  In the inset of figure 3 are shown the static 
structure factors S ( k )  for different values of k .  For k = 0, S ( k )  = 0 and increases mildly 
as k increases up to k ?z 1 x lo6 cm-' beyond which it increases perceptibly as is clear 
from the figure. Sc'.O(k) are slightly different from the corresponding S"(k)  for different 
values of k as has also been noted earlier. 

Strictly speaking, the system needs a quantum-mechanical description as hrh is 
comparable with the mean interparticle distance. Using the expression for S Q ( k ,  o) given 
by equation (ZO), computations have been made. It may be emphasized that, for each k ,  
the zeroth sum rule, i.e. S Q ( k )  from equation (24) and using equation (28) are the same. 
Similarly S Q ( k ,  0) from the calculated S Q ( k ,  w = 0) and from equation (23) are also in 
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Figure 6. Varialion in collective mode angular frequency or with the wavevector k (i.e. 
dispersion relationship) for L one-componenr hot ram plasma (n = 3.9 x ~ m - ~ :  T = 297 K) 
under different considcrationr: cume I ,  quantum plasma (equation (IO)); curve 2. classical 
plasma (equation (17)); cuwe 3, classical approximate plasma (equarion (31)); line 4, classical 
plasma described by the Dmde model (equauon (33)). 

agreement. Further, the collective mode determined by the value of w at which the peak 
occurs and corresponding k have been used to evaluate $ ( k ,  w )  which turns out to be very 
close to zero, when N = 100. S a ( k , w )  with w for k = 4.25 x IO6 cm-' is plotted in 
figure 4 for comparison with the corresponding classical case. S Q ( k .  w )  peaks at a higher 
value of energy, is broader, is less peaked and has a lower value of S Q ( k ,  0) in comparison 
with the corresponding S"(k, O), as is clear from the figure. 

Thus, the collective mode in the quantum-mechanical description of the system is not 
as well defined as in the classical case because of the broadening of the peak structure of 
S Q ( k ,  w ) .  The disorder in the system is substantially increased in comparison with that in 
the classical case. 

In figure 6 are plotted the peak positions where the collective modes occur for different 
values of k .  When k is  small, the collective mode is present at the same frequency as in the 
classical case. When k becomes approximately equal to 1.5 x IO6 cm-I, i t  starts to deviate 
and keeps increasing with increase in k as shown in the figure. F o r k  6 x lo6 cm-', 
the difference is quite large. Thus, the collective mode occurs at a higher energy in the 
quantum-mechanical case than in the corresponding classical case when k lies between, say, 
2 x IO6 cm-' and 6 x lo6 cm-l. 

In figure 7(a) are plotted full widths at half-maximum for different values of k .  The 
width in the quantum-mechanical case is more than in the corresponding classical case while 
this difference is small for small values of k < 2 x IO6 cm-I. It becomes significant with 
increase in the value of k as shown in the figure. It is a maximum for k = 6 x IO6 cm-', 
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I k x 1 cm-' - 
Figure 7. (a) Vxiation in the full width Au at half-maximum of the dynamicd structure factor 
with wavevector k for the one-component rare hot plasma (n = 3.9 x I O L 8  cm% T = 297 K) 
under different conditions: curve 1 ,  quantum plasma; curve 2, classical plasma; curve 3, classical 
approximate plasma. (b) Variation in the maximum value of the dynamical structure factor i.e. 
SmUx(k. 0,) with wavevector k for the one-componenr me hot plasma (n = 3.9 x cm": 
T = 291 K) under different considerations: curve 1. qumtum plasma: curve 2, classical plasma: 
curve 3. classical approximae plasma. (c) Vxiation in zero-frequency dynamical structure factor. 
i.e. S(k.0)  with k for the one-component m hot plasma (n = 3.9 x 1OIs cm-l; T = 297 K) 
under different conditions: curve 1. qumtum plasma; curve 2. classical plasma: x a i s .  i.e. 
S ( k )  = 0, classical approximate plasma 

the largest value of k considered here. 
In figure 7(b) are plotted the values of peak of the collective modes, i.e. S(k, w = me) 

for different k .  In comparison with the corresponding classical values, @ ( k ,  we) peaks 
have lower values as shown in the figure. 

In figure 7(c) are plotted S Q ( k ,  0) together with the classical result. For small k ,  the 
two are very close to each other and, even for larger k ,  the difference is not that significant 
as shown in the figure. Only when k > 2 x lo6 cm-', does S Q ( k .  0) show a sharp decrease 
and it continues for larger values of k. 

In the inset of figure 3 are shown S Q ( k )  f o r k  lying between 0 and 6 x lo6 cm-'. Fork 
between 0 and 2 x lo6 cm-I, S p ( k )  is close to SC'(k).  Fork  greater than 2.5 x IO6 cm-', 
S Q ( k )  is less than S"(k) as shown in the figure. F o r k  = 6 x lo6 cm-I, the difference 
between S Q ( k )  and S"(k) is a maximum. 
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4. Conclusions 

Equations (11) and (16) are analytical expressions for & ( k , w )  and t C ' ( k , w )  for the 
OCQRHP and the OCCRHP, respectively. These correctly dcscribe the dynamics of the 
plasma for all values of wavevector and frequency. 

w) .  is quite different from the 
corresponding classical expression ~ ; ' ( k ,  0). It reduces conectly to the classical case when 
h -+ 0 and gives quite a different dynamical description of the plasma when the quantum 
parameter h k / m V  is large. This is reflected in the study of collective modes of the system 
which are quite different from the corresponding classical case, particularly for high values 
of the wavevector. 

Equation (17) for &:'(k,w) gives a very different result for larger values of w j k V ,  in 
comparison with the approximate cf'."(k. w )  used widely. 

The effect of incorporating the quantum-mechanical nature of the plasma results in 
introducing a sort of disorder in the system (as exhibited by the broadening of the peak in 
the dynamical structure factor S(k ,  w )  of the plasma). This disorder increases with increase 
in the value of the wavevector. 

It is clear from the study that for a thermal plasma the correct dielectric function is both 
k and w dependent. It is, therefore, not quite correct to treat such a plasma using the Drude 
model 1171 which is independent of the wavevector. 

S P Tewari et a1 

The expression for the quantum-mechanical case, 
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Appendix 

Using the Green function formalism, the expression for the dielectric function &(k ,  w )  for 
the strongly degenerate case can be written as follows [ 151: 

@ , U ) =  l + V ( k ) F o ( k , w + i q )  ( A I )  

where 

V ( k ) ' =  4ne21k2 

and 
d 3 j  [n .  0 - -n?] 

p+k k 

+ iq - E % + ~  - E!) 
~ ' ( i ,  w + iq) = -2 

= FP(k, w) + i F i ( i ,  w )  (A%) 

where ni and na+p are the distribution functions at the momenta i and -t j, respectively, 
and correspond to the Fermi-Dirac distribution functions. 

In order to obtain & ( k , w )  for the OCQRHP, one has to substitute for nf and nj+p in 
equation ( M a )  the following expressions: 
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and 

where 
e x p p u )  = inA:h. 

Using the Dirac identity given by equation (4) and simplifying, one can obtain the follofi,ing 
expression for F i ( k ,  U ) :  

F : ( k , o ) =  (--)”’$exp(--!.?.-) a m  ( 

[ ( 2 : r T )  ( d r T ) ] ’  

) exp -- 2 k s T  8mksT 2k2ksT 

x exp - -exp -- 

One can obtain Fp(k,  w )  after using the transformations 
Equation (A.4) is the same as equation (5). 

2 
w‘ = - 

m 2 
and 

and simplifying to get the following expression: 

F;(k, U) = - 1 ( A)112 f i  ksT ftk [ 1- - , Y - X  dX exp [ - (X + 

(A61 
* dX 

Equation (A6) can be transformed into the following expression: 

FP(k, w )  = ( [. { (?)I/’ (0  k + E ) )  2m - 0 1 ( ? ) I r 2  (; - E) )] 
(A71 

with 

(AS) 

Equation (A7) is the same as equation (9). In the Green function formalism [15], only 
approximate expressions for O(z) have been obtained for z >> 1 and z << I .  

While, @ ( z )  is convergent for z << 1,  it is divergent for z >> 1. One can examine it 
by the ratio test. The ratio R of the nth to (n - 1)th terms of @(z)  for z >> 1 [ 151 is as 
follows: 

(A% 

In the limit n --f CO. R --f CO and, therefore, the series diverges. Hence &,(k, w )  will also 
diverge. This is true for both the cases of z ,  i.e. z+ and z -  given as 

* e x p ( 4 )  
@(z) = I I - ” ~ P  dr 1, z - t  

3 

w hk 
z + = - + -  J ~ v  2 J Z m v  
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and 
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hk 

In ( k ,  w) calculations, the series containing z- increases much more rapidly than that 
containing t+. The net result is a divergent $1 ( k ,  w )  which is an unphysical result. Such a 
situation does not occur for : << 1, and in this case & l ( k .  w )  is convergent. 

The ratio R of the nth to (n - 1)th terms in the series for & ~ ( k ,  w) in our expression 
given by equation (IO) for both i >> 1 and z < 1 is given as follows: 

For any z, as n tends to 00, R + 0. This is true for both z+ and z- .  We therefore obtain 
a convergent value of &I ( k ,  w )  for all values of :. 

We have also done explicit numerical calculations for various terms (i.e. n) for R,  using 
equations (A9) and (A10) and the numbers do confirm the above results. 
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